Immobilized zirconium ion affinity chromatography for specific enrichment of phosphopeptides in phosphoproteome analysis.
نویسندگان
چکیده
Large scale characterization of phosphoproteins requires highly specific methods for purification of phosphopeptides because of the low abundance of phosphoproteins and substoichiometry of phosphorylation. Enrichment of phosphopeptides from complex peptide mixtures by IMAC is a popular way to perform phosphoproteome analysis. However, conventional IMAC adsorbents with iminodiacetic acid as the chelating group to immobilize Fe(3+) lack enough specificity for efficient phosphoproteome analysis. Here we report a novel IMAC adsorbent through Zr(4+) chelation to the phosphonate-modified poly(glycidyl methacrylate-co-ethylene dimethacrylate) polymer beads. The high specificity of Zr(4+)-IMAC adsorbent was demonstrated by effectively enriching phosphopeptides from the digest mixture of phosphoprotein (alpha- or beta-casein) and bovine serum albumin with molar ratio at 1:100. Zr(4+)-IMAC adsorbent was also successfully applied for the analysis of mouse liver phosphoproteome, resulting in the identification of 153 phosphopeptides (163 phosphorylation sites) from 133 proteins in mouse liver lysate. Significantly more phosphopeptides were identified than by the conventional Fe(3+)-IMAC approach, indicating the excellent performance of the Zr(4+)-IMAC approach. The high specificity of Zr(4+)-IMAC adsorbent was found to mainly result from the strong interaction between chelating Zr(4+) and phosphate group on phosphopeptides. Enrichment of phosphopeptides by Zr(4+)-IMAC provides a powerful approach for large scale phosphoproteome analysis.
منابع مشابه
Highly specific enrichment of phosphopeptides by zirconium dioxide nanoparticles for phosphoproteome analysis.
Large-scale characterization of phosphoproteins requires highly specific methods for the purification of phosphopeptides because of the low abundance of phosphoproteins and substoichiometry of phosphorylation. A phosphopeptide enrichment method using ZrO2 nanoparticles is presented. The high specificity of this approach was demonstrated by the isolation of phosphopeptides from the digests of mo...
متن کاملSelective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis.
Due to the dynamic nature and low stoichiometry of protein phosphorylation, enrichment of phosphorylated peptides from proteolytic mixtures is often necessary prior to their characterization by mass spectrometry. Several phosphopeptide isolation strategies have been presented in the literature, including immobilized metal ion affinity chromatography. However, that technique suffers from poor se...
متن کاملAnalysis of protein phosphorylation using mass spectrometry.
Protein phosphorylation has been known to be a pivotal modification regulating many cellular activities and functions. Except for several conventional techniques, mass spectrometry-based strategies are increasingly considered as vital tools that can be utilized to characterize phosphorylated peptides or proteins. In this article, we summarized currently available mass spectrometry-based techniq...
متن کاملLarge-scale phosphoproteome analysis of human liver tissue by enrichment and fractionation of phosphopeptides with strong anion exchange chromatography.
The mixture of phosphopeptides enriched from proteome samples are very complex. To reduce the complexity it is necessary to fractionate the phosphopeptides. However, conventional enrichment methods typically only enrich phosphopeptides but not fractionate phosphopeptides. In this study, the application of strong anion exchange (SAX) chromatography for enrichment and fractionation of phosphopept...
متن کاملMonoliths with immobilized zirconium ions for selective enrichment of phosphopeptides.
To meet the demands of protein phosphorylation study, immobilized zirconium ion affinity chromatography (Zr(4+)-IMAC) monolith was prepared by combining UV-initiated polymerization of monolithic support and subsequent photografting in both capillary columns and microchannels. Hydrophilic poly(2-hydroxyethyl methacrylate (HEMA)-co-ethylene dimethacrylate (EDMA)) monolithic support was prepared u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular & cellular proteomics : MCP
دوره 6 9 شماره
صفحات -
تاریخ انتشار 2007